Comment le blé a inventé la langue mathématique

Spread the love

Mais d’où viennent les mathématiques ?

Imaginez-vous 5 000 ans avant notre ère, en basse Mésopotamie, au sud-ouest Iran. Le soleil se lève sur les plaines vertes et fertiles de la Susiane. Shimokeen admire fièrement son champ de blé et d’orge qui baignent sous les rayons lumineux.

Ha ! Comme le système d’irrigation inventé depuis peu a tenu toutes ces promesses ! il y aura de quoi nourrir toute la cité cette année et particulièrement cet hiver.
Mais son enthousiasme est un peu assombri par un obstacle qu’il rencontre de plus en plus. Car si les récoltes sont de plus en plus abondantes, il devient de plus en plus compliqué d’en capturer la quantité, de stocker l’information en mémoire, en bref de compter.
Autrefois quand la cité se montait à 150 âmes, quand le blé cueilli suffisait à toutes les nourrir, il pouvait calculer grâce à ses deux mains et mémoriser cette information. Mais maintenant que le royaume compte des milliers de personnes et que les moissons se sont amplifiées, il faut désormais un système pour stocker cette information car la mémoire ne suffit plus.

C’est le problème que nos ancêtres de la préhistoire ont rencontré quand l’agriculture a pointé le bout de son nez.  Car si l’agriculture a permis à l’homme de dompter une partie de la nature, comme des plantes autrefois sauvages très nourricières tels que le blé ou l’orge, elle a l’obligé à imaginer un outil qui lui permette d’en gérer la production.

Avec la culture du blé, l’homme est donc passé de nomade à sédentaire, a agrandit sa famille, s’est établit en communauté de plus en plus grande: en cité.  Plus de bras, plus de récoltes, plus de nourriture, plus d’enfants, plus de bouches à nourrir, plus de bras … :  une boucle de croissance qui a défié le génie de certains esprits sumériens de concevoir un système qui libérerait la charge mentale humaine pour conserver de l’information : ils inventèrent alors l’écriture mathématique.

Les lecteurs de cet article ont également lu :  Célestin Freinet : Une Pédagogie Alternative en 7 Points

Oui, il y a 5 000 ans avant Jésus-Christ, ce ne sont ni les poèmes, ni les chansons, ni les histoires qui ont pressé l’homo sapiens à créer l’écriture mais les mathématiques … pour des besoins purement bureaucratiques !

Alors, rejoignons le Sumérien Shimokeen et nos ancêtres dans cette fantastique aventure de la révolution agricole qui a vu la naissance de l’écriture mathématique et de sa langue avec les nombres et les opérations.

Comment comprendre les maths

Dès leur plus jeune âge, les enfants ont une intuition des maths (un peu, beaucoup). Au fur et à mesure, l’apparition du nombre va leur permettre d’exprimer une quantité, de se repérer, de comparer.
Les mathématiques sont utilisées … partout. Dans les sciences (de la matière – physique, chimie -; de la terre, de l’univers, de la vie et de l’environnement), mais aussi en danse (cliquez vers l’article) et en musique.

Elles nous accompagnent dans notre quotidien, quand on fait nos courses et qu’on gère nos finances ; elles outillent les architectes et les décorateurs quand ils prennent les dimensions des meubles, des façades et des murs, et les couturiers quand ils élaborent les patrons.

Et elles offrent une oreille attentive aux musiciens quand ils subliment 12 notes en en faisant des accords, des refrains, des intervalles, une rythmique.

« La musique est un exercice caché d’arithmétique tel que l’esprit ignore qu’il compte » – Leibnitz, 1712

 

Les mathématiques sont une langue que tout le monde parle quelque soit le pays, la culture ou la religion. Il existe un certain consensus sur la langue mathématique que la professeure en mathématiques et experte en gestion mentale Armelle Géninet nomme « le mathématicain ».

Cela vaut bien le coup de savoir le parler et l’écrire, non ?
Eh bien commençons par les bases avec les opérations simples.

Les lecteurs de cet article ont également lu :  La Pédagogie Explicite

 

Le sens de l’addition

Notre fier Shimokeen a cueilli le blé ces derniers jours avec ses jeunes fils. Ils en ont fait des fagots de 60 épis qui forment une montagne d’or qui ruissellent sous la lumière naturelle. 60 car les Sumériens comptent en base 6. Cette abondance rend notre agriculteur plein de joie ; il va sans doute même pouvoir troquer quelques-unes de ses récoltes avec les cités voisines. Oui, mais combien ? deux ? trois ? dix ? Plus ?
PLUS, c’est là que l’addition pointe le bout de son nez

comment comprendre les maths - addition

Le sens de la soustraction

« Voilà ! » Shimokeen se frotte les mains de satisfaction. Non seulement son blé part comme des petits pains mais en plus les signes annonciateurs du dieu Hadad qui veille au climat sont clairs : la pluie tombera bientôt sur les semences plantées ces derniers jours. Et pourtant il lui faut encore à évaluer le solde de sa récolte. Combien en a-t ’il vendu ? Combien lui en reste-t ’il ?

comment comprendre les maths - soustraction

Comment enseigner l’addition et la soustraction

La gestion des dizaines

Pour l’addition comme pour la soustraction, tout semble bien se passer jusqu’à … ce qu’on doive gérer cette fameuse retenue.

Prenons 19 + 16. De manière naturelle, les enfants vont avoir tendance à commencer par additionner les dizaines entre elles, c’est-à-dire le 1 de 19 avec le 1 de 16.
Les experts en pédagogie alternative (comme la gestion mentale ou la méthode Montessori) conseillent de laisser faire dans un premier temps. Puis leur proposer le système de rosaces-triangles suivant (par exemple) qui va leur permettre de manipuler, de découvrir à leur rythme l’utilité de la retenue. Ils vont ainsi s’en approprier la compréhension car la retenue s’est révélée une solution à un obstacle mathématique qu’ils ont vécu.
La rosace représente la dizaine et le losange, une unité.
10 losanges équivalent à 1 rosace.

comment comprendre les mathscomment comprendre les mathscomment comprendre les maths

 

Les représentations multiples

La méthode de Singapour (cliquez vers l’article) a montré son efficacité dans l’enseignement des mathématiques en plaçant son pays au premier rang des nations dans la discipline grâce à plusieurs principes dont les représentations multiples.

Les lecteurs de cet article ont également lu :  Kumon: une pédagogie alternative

Le constat était flagrant : les élèves sont souvent pris dans une mécanique de résolution sans en comprendre le sens, celui des nombres mais aussi des opérations. Ils font, sans vraiment comprendre.

La méthode de Singapour insiste dès le plus jeune âge des apprentis mathématiciens qu’il n’y a pas qu’une seule façon de résoudre un problème, qu’une seule manière de représenter une notion.

Ainsi, très tôt, en étant confrontés aux représentations multiples des nombres, les élèves s’imprègnent de cette règle essentielle des mathématiques « plusieurs chemins peuvent mener à Rome ». Créant alors une agilité mentale et un certain goût pour  l’expérimentation.

Par exemple : le nombre 12

Il peut se décliner en multitudes d’opérations.

Pour récapituler


Shimokeen est le plus heureux des hommes et peut être l’un des plus riches aussi. « On vit une belle époque! », se dit-il. La saison a été très rentable et il a cotoyé des hommes de savoir qui lui apporté assez de connaissance et de nouveaux outils (l’écriture mathématique avec l’addition et la soustraction) pour gérer ses biens, et ainsi nourrir les hommes et les femmes de la cité.

 

C’est grâce à ces esprits créatifs Sumériens que d’autres hommes venus 20 siècles plus tard, au 17ème siècle, vont formaliser à leur tour les opérations de multiplication, puis des fractions.

Alors, êtes-vous prêts pour aller à la rencontre des esprits du siècle des lumières et découvrir ces opérations dans notre prochains articles ?

 

En attendant, si vous avez apprécié cet article, partagez vos avis et expériences dans les commentaires ci-dessous !

Sources

« Faîtes-les réussir en maths – De l’école à l’entrée au lycée ». Armelle Géninet, Chronique Sociale, 2015.

« Sapiens. Une brève histoire de l’humanité ». Yuval Noah Harari, Albin Michel, 2014.

12 Comments

  1. « son blé part comme des ptits pains » et « pressé l’homo sapiens à créer l’écriture mais les mathématiques … pour des besoins purement bureaucratiques ! » Franchement, j’adore !
    Très instructif cet article.

  2. J’aime beaucoup la méthode de Singapour (que je viens de découvrir grâce à ton blog).
    Nos enfants sont tous différents, leur laisser le choix de travailler avec la méthode qui leur convient le mieux, c’est un vrai plus !

    • Oui, chaque enfant est unique et a donc besoin d’apprendre différemment
      Merci Jessica pour ces retours

  3. Super intéressant !
    J’ai d’ailleurs eu l’occasion d’avoir une présentation à l’école Montessori de ma fille ce week-end pour nous montrer le grand damier des multiplications… impressionnant ce matériel pour passer du concret à l’abstrait ! Et je vois bien comme elle n’a pas « peur » des grands nombres depuis toute jeune !

  4. Merci les explications très ludiques. Je ne connaissais pas non plus la méthode Montessori. Merci pour cet article très intéressant et instructif 👍

  5. J’adore quand l’histoire se mêle aux sciences et inversement! Cela donne tout son sens aux problématiques! Merci pour cet article super intéressant!

    • Absolument Claire ! Les sciences ainsi que les autres disciplines font corps avec l’histoire

Poster un Commentaire

Votre adresse de messagerie ne sera pas publiée.


*